
Java/JVM com Docker em produção:
lições das trincheiras

Leonardo Zanivan
panga@apache.org

Why Docker Container?

Review:

Why Docker Container?

● Environments (dev, test, UAT, prod)
● Productivity (onboarding, develop, test)
● Single Responsibility Principle
● DevOps or Dev + Ops
● Economies of $cale

Use Cases

● Pokemon GO (1000+ nodes)
● "X" Messaging (1000+ containers)
● Uber Docker Host (~300 containers)

JVM + Containers (docker, rkt, runC)

● Memory
● CPU
● Disk I/O
● Network

JVM Memory on Container

● Common problems:
○ OOM Killer
○ OutOfMemory error
○ High memory usage

JVM Memory on Container

Cause #1: Java Max Heap Size not defined (-Xmx)

● JVM default MaxHeapSize = Total host memory / 4
● JVM isn't aware of cgroups! (JDK 9 has an experimental flag)

Example:

total host memory = 32GB
max container memory = 1GB
default heap size = 8GB

JVM Memory on Container

Cause #2: Container Memory < Java Memory (Heap+Stack)

● Java max heap isn't the max amount of memory used
● Use a 0.7 factor of Java Max Heap to Container

Example:

max container memory = 1GB
wrong max heap size = 1GB
ok max heap size = 700MB

JVM Memory on Container

Cause #3: No SWAP partition

● Your local machine has SWAP, but production not!
● Default container SWAP limit on Docker is 2*memory

Example:

max container memory = 1GB
max container swap = 2GB
max jvm heap size = 2GB

JVM Memory on Container

Cause #4: Default Garbage Collector

● Always specify a Garbage Collector (JDK < 9)
● Default GC doesn't scale, is slow and consume more RAM

Solution:

CMS = -XX:+UseConcMarkSweepGC
G1 = -XX:+UseG1GC

JVM CPU on Container

● Problem: Slow GC performance, bad lambda parallelism
● Cause: JVM isn't aware of cgroups!

Example:

total host cores = 8
max container cores = 1
max jvm cores = 8

JVM CPU on Container

● Solution: Set appropriate JVM properties

-XX:ParallelGCThreads=<max_container_cores>
-XX:ConcGCThreads=...
-Djava.util.concurrent.ForkJoinPool.common.parallelism=...

JVM Disk I/O on Container

● Problem: Slow WRITE performance
● Cause: Container is using graph driver
● Solution: Create a named volume or mount from host

docker volume create mysql-data
docker run -v mysql-data:/var/lib/mysql

JVM Disk I/O on Container

● Problem: Slow SecureRandom entropy calculation
● Cause: Container doesn't have enough events
● Solution: Set security JVM property to async

-Djava.security.egd=file:/dev/urandom

JVM Network on Container

● Problem: Bad DNS resolution on Alpine based images
● Cause: Alpine images doesn't use glibc
● Solution: Don't use Alpine images when using

DNS reverse lookups or Domain Search

Example:
docker run --dns-search=service.consul
$ ping myservice
$ ping: cannot resolve myservice:
 Unknown host

IDE support for Docker

● NetBeans (8.2+)
● IntelliJ
● Eclipse

Tooling support for Docker

● Build lifecycle
○ Maven Plugin (docker-maven-plugin)
○ Gradle (gradle-docker-plugin)

● Tests
○ JUnit (docker-compose-rule)
○ Arquillian Cube

Container Schedulers

● Docker Swarm
● Kubernetes
● Mesos/Marathon
● AWS ECS
● etc.

Introducing Swarm + docker compose v3

● Swarm is ready to use in Docker 1.13+
● Compose v3 support secrets & deploy options

secrets:
- mypassword:
deploy:
- replicas
- resources limits
- update config
- placement

Demo time!

Extra Container challenges

● Multi-host Networking
● Transparent Proxy
● Service Discovery
● Monitoring & Logs

Docker Architectural View

Moby Project

github.com/docker/docker => github.com/moby/moby

Questions?
panga@apache.org

github.com/panga/qcon2017

